If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12p^2+4p-1=0
a = 12; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·12·(-1)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8}{2*12}=\frac{-12}{24} =-1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8}{2*12}=\frac{4}{24} =1/6 $
| -5/8(x)=-9/10 | | -3(2h-3)=(29-h) | | x+6/x-1=5 | | -8w+5(w-6)=-33 | | 1.5q-5.9q+1.3=-50.3 | | 20x-36=16x-15 | | x2+18x+45=0 | | .4x-91=2x-41 | | -32h-3=29-h | | X^-3x^-4x=0 | | 4v^2+16v=55 | | 0.33333333333(t+7)=24 | | (6-z)(5z-4)=0 | | 3y-4=4-+3y | | 3x^-17x+10=0 | | r^2=2r-33=0 | | r^2+2-33=0 | | -4(n+9=12-(n-6) | | 120x=600+39x | | 1/4z^2+2=z | | (1)(3)(t+7)=24 | | 101/4z62+2=z | | 5x+20=x+100 | | 10x-7(x+3)=-45 | | 8x-3=6x-17 | | 4x+2-x=6x-4-3x+6 | | 1/3(t+7=24 | | 0.5n(n+1)=6 | | 4(x+4)+3(x+2)=7x+22 | | 6z=42+10 | | 10=d^2-5d | | 9=34(x+8) |